Normal holomorphic maps from C to a projective space

نویسنده

  • A. Eremenko
چکیده

A theorem of A. Ostrowski describing meromorphic functions f such that the family {f(λz) : λ ∈ C∗} is normal, is generalized to holomorphic maps from C∗ to a projective space. MSC 2010: 30D45, 32A19.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Transversely Projective Structure on a Transversely Holomorphic Foliation

The results of Biswas (2000) are extended to the situation of transversely projective foliations. In particular, it is shown that a transversely holomorphic foliation defined using everywhere locally nondegenerate maps to a projective space CPn, and whose transition functions are given by automorphisms of the projective space, has a canonical transversely projective structure. Such a foliation ...

متن کامل

Normal holomorphic curves from parabolic regions to projective spaces

A holomorphic map C → Pn is called normal if it is uniformly continuous from the Euclidean metric to the Fubini–Study metric. The paper contains a survey of known results about such maps, as well as some new theorems. 1 Holomorphic curves in projective spaces This text was written in 1998 as an answer to a question asked by Misha Gromov. As he soon answered this question himself [6], this prepr...

متن کامل

Summary of Prof

of Prof. Yau's lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) A geometric structure on a manifold is a cover by coordinate systems [a " sub-atlas " ] in which the transition functions from one coordinate system to another are not arbitrary mappings but rather belong to some specific set of mappings from (open subsets of) Euclidean space to ...

متن کامل

Normal Holomorphic Maps from C

A theorem of A. Ostrowski describing meromorphic functions f such that the family {f(λz) : λ ∈ C} is normal, is generalized to holomorphic maps from C∗ to a projective space. Let f : C → P be a holomorphic curve and (1) F = (g0, g1, . . . , gn) some homogeneous representation of f . This means that gj are analytic functions in C without common zeros. When n = 1, we have P = C, and f can be iden...

متن کامل

On Abelian Families and Holomorphic Normal Projective Connections

1.) Pm(C), 2.) smooth abelian families, 3.) manifolds with universal covering Bm(C). Here Bm(C) denotes the ball in C , the non compact dual of Pm(C) in the sense of hermitian symmetric spaces. The second point inlcudes the flat case of an abelian manifold. Any compact Riemann surface admits a holomorphic normal projective connection, this is the famous uniformization theorem. Kobayashi and Och...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012